欢迎访问爱文网文库范文大全网!本站转让,联系QQ:168657525
首页 > 学习 > 高中 > 高考 >

高考数学万能解题技巧归纳总结

分享 时间: 加入收藏 我要投稿 点赞

高考像漫漫人生路上的一道坎,无论成败与否,其实并不那么重要,重要的是要总结高考的得与失,以下是小编准备的高考数学万能解题技巧归纳,欢迎借鉴参考。

高考数学万能解题技巧归纳





高考数学答题技巧

数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,有些题型概念性比较强,那么这些试题传递出来的就是以数学学科规定和习惯为依据的,那么同学们就千万不能够擅自去改变它,而是应该对号入座。数学选择题的解题方法也是多种多样的,最重要的还是审题,然后懂得挖掘隐藏条件,再就是要懂得选择解题方法同时控制好解题时间。

填空题“直扑结果”

填空题和选择题都是属于客观性的题目,这类题目的特点就是不计较同学们的解题步骤,最在乎的是同学们的答案,只要答案对了,那么分数也就到手了,因此,在解答这些题目的时候,要正确,迅速,稳定,心态一定要好,不能够马虎,不能粗心。

解答题“步步为营”

解答题是分值占的较大,难度也比较大的题目,因此,在做解答题的时候,就不能够像做填空题和选择题那样只需要一个结果就好了,做解答题需要将解答过程一个个的写出来,一步一步来,要知道,综合题目,阅卷老师都是看答题要点给分的。所以,在做题的时候要知道多少就写出来多少,不要纠结于自己到底会不会做这道题。

高考数学压轴题解题技巧

1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。

2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。

3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。

另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

如果遇到找相似的三角形,要切记先看角,再算边。遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。这都是能大大简化运算的。

高考数学最佳解题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。


217360
领取福利

微信扫码领取福利

微信扫码分享