三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。以下是小编为大家收集的关于三角函数所有公式大全的相关内容,供大家参考!
三角函数所有公式大全
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan? A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A–Sin? A
=2Cos? A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)?;
cos3A = 4(cosA)? -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(A/2) = √{(1–cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1–cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2__[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2__[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2__[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2__[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]?}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]?}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a?sin(a)+b?cos(a) = [√(a?+b?)]__sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a?+b?)]__cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]?;
1-sin(a) = [sin(a/2)-cos(a/2)]?;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
三角函数诱导公式知识点
公式一:终边相同的角的同一三角函数的值相等
设α为任意锐角,弧度制下的角的表示:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:π+α的三角函数值与α的三角函数值之间的关系
设α为任意角,弧度制下的角的表示:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与 -α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系
(1)π/2+α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
(2)π/2-α与α的三角函数值之间的关系
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
(3)3π/2+α的三角函数值之间的关系
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/α+α)=-tanα
(4)3π/2-α的三角函数值之间的关系
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
三角函数公式大全
两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota)
cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2a=2sina__cosa
半角公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) ?
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
和差化积
2sinacosb=sin(a+b)+sin(a-b)
2cosasinb=sin(a+b)-sin(a-b) )
2cosacosb=cos(a+b)-sin(a-b)
-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2)
cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb
积化和差公式
sin(a)sin(b)=-1/2__[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2__[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2__[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a) pi=3.1415926....
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tga=tana=sina/cosa
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a__sin(a)+b__cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a__sin(a)-b__cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
三角函数的周期
三角函数的周期T=2π/ω。完成一次振动所需要的时间,称为振动的周期。若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正x数l,称为f(x)的(基本)周期。
三角函数计算方法
万能公式。sina=[2tan(a/2)]/[1+tan?(a/2)];cosa=[1-tan?(a/2)]/[1+tan?(a/2)];tana=[2tan(a/2)]/[1-tan?(a/2)]。
降幂公式。sin?α=[1-cos(2α)]/2;cos?α=[1+cos(2α)]/2;tan?α=[1-cos(2α)]/[1+cos(2α)]1。
直角三角形。在直角三角形ABC中,C角为直角,A、B、C所对的边分别为a、b、c,sinA=a/c;cosA=b/c;tanA=a/b。
三角函数都包括有哪些?
三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
上一篇:高考数学专题答题技巧方法
下一篇:小学数学智力题15道